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Abstract. We extend Ahlbrandt and Ziegler’s reconstruction results ([AZ]) to the metric setting:
we show that separably categorical structures are determined, up to bi-interpretability, by their
automorphism groups.

Introduction

Categoricity offers an ideal setting for reconstruction: a lot of information on a categorical
structure can be recovered from the action of its automorphism group. Indeed, the Ryll-Nardzewski
theorem asserts that a classical countable structure is ℵ0-categorical if and only if its automorphism
group acts oligomorphically on it. From this, definability in countably categorical structures
translates as invariance under the action of the automorphism group.

An analogous phenomenon occurs in the continuous setting: a metric structure is separably
categorical if and only if the action of its automorphism group is approximately oligomorphic
([BBHU, theorem 12.10]). This continuous Ryll-Nardzewski theorem again implies that definability
boils down to invariance by automorphisms (see section 1).

In this paper, we focus on a reconstruction result due to Ahlbrandt and Ziegler ([AZ]) which
states that countably categorical structures are determined, up to bi-interpretability, by their
automorphism groups (regarded as topological groups). We extend Ahlbrandt and Ziegler’s result
to the continuous setting. More precisely, we introduce the notion of an interpretation between
metric structures and prove that two separably categorical structures are bi-interpretable if and
only if their automorphism groups are topologically isomorphic.

This guarantees that every model-theoretic property of separably categorical structures will
translate into a topological property of their automorphism groups. Tsankov and the first au-
thor ([BT]), and then Ibarlucía ([I]), are precisely studying model-theoretic properties directly on
groups.

Although our result encompasses its classical counterpart, the proof we give is fundamentally
metric and is quite different from the original one. Indeed, we apply a construction of Melleray
([M, theorem 6]) that provides a canonical way to make a metric structure out of any Polish group
(we will call this the hat structure associated to the group; see subsection 3.3 for a definition). The
heart of the reconstruction consists in showing that every separably categorical metric structure
is in fact bi-interpretable with the hat structure of its automorphism group.
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Throughout the paper, all languages are assumed to be countable, in order for the Ryll-
Nardzewski theorem to apply.

1. Definability

In this section, we prove the aforementioned fact that in separably categorical structures, de-
finability amounts to invariance under the action of the automorphism group. First, we introduce
the following item of notation.

Notation. If ρ is a bounded pseudometric on a structure M , then (M,ρ) will denote the quotient
metric space induced by ρ. For such a ρ, let ρω be the pseudometric on Mω defined by

ρω(a, a′) =
∑
n<ω

1

2n
ρ(an, a

′
n).

When ρ is a metric, so is ρω, which then induces the product topology on Mω.
We will denote by (̂M,ρ) its metric completion. Note that this is not the hat structure mentioned

in the introduction.

Proposition 1. LetM be a separably categorical metric structure and G its automorphism group.
Let P : Mn → [0, 1] a continuous predicate on M . Then P is definable in M if and only if P is
G-invariant.

Proof. ⇒] If P is definable, there is a sequence (ϕk)k>1 of formulas which converges uniformly to
P . Now G preserves (interpretations of) formulas so P is also G-invariant.
⇐] Suppose that P is G-invariant. If a and b have the same type in Mn, then, since M is

approximately homogeneous ([BBHU, corollary 12.11]) and P is continuous, the G-invariance of
P gives that P (a) = P (b).

Thus, P induces a metrically continuous map Φ : Sn(T ) → [0, 1] on types, defined by Φ(p) =

P (a) for a ∈ Mn of type p. Since every type is realized in M (by the Ryll-Nardzewski theorem
[BU1, fact 1.14]), the map Φ is well-defined.

Now, by the Ryll-Nardzewski theorem again, the logic topology and the d-metric topology on
Sn(T ) coincide. This implies that Φ is continuous for the logic topology as well. Thus, by theorem
9.9 of [BBHU], the predicate P is definable. �

Remark 2. The same holds for predicates in an infinite number of variables. In fact, if Mω

is endowed with dω, then the Ryll-Nardzewski theorem can be reformulated as follows: a metric
structureM is separably categorical if and only if the space (Sω(M), dω) of types in infinitely many
variables is compact. Thus, the proof above readily adapts to an infinite number of variables.
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2. Reconstruction up to interdefinability

We begin by reconstructing separably categorical structures up to interdefinability, mirroring
Ahlbrandt and Ziegler’s theorem 1.1 (in [AZ]). The proof is exactly the same as in the discrete
setting.

Definition 3. Let M and N be two structures on the same universe. We say that M and N are
interdefinable if they have the same definable relations.

Proposition 4. LetM and N be two separably categorical metric structures on the same universe,
in languages LM and LN respectively. Then M and N are interdefinable if and only if their
automorphism groups are equal.

Proof. ⇒] Assume that M and N are interdefinable and let R be a relation in LN . Since it is
definable in N , it is definable in M as well, so proposition 1 implies that it is Aut(M)-invariant.
Thus Aut(M) preserves every relation in LN so Aut(M) ⊆ Aut(N). Similarly, we obtain that
Aut(N) ⊆ Aut(M).
⇐] Conversely, assume that Aut(M) = Aut(N) and let R be definable in M . Then, by propo-

sition 1, it is Aut(M)-invariant hence Aut(N)-invariant by assumption. Thus, R is definable in N
and the two structures have the same definable relations. �

3. Reconstruction up to bi-interpretability

3.1. Interpretations. In the classical setting, an interpretation of a structure M in an other
structure N is an embedding of M into a definable quotient of a finite power of N , that is, into
the imaginaries of N . As Usvyatsov and the first author pointed out in [BU2], the right definition
of imaginaries in metric structures should allow classes of infinite tuples and this is also true for
interpretations.

Definition 5. Let M and N be two metric structures in languages LM and LN respectively. An
interpretation of M in N consists of the following data:

• a definable pseudometric ρ on Nω and
• an isometric map ϕ : (M,dM)→ ̂(Nω, ρ)

such that

• the predicate P : Nω → [0, 1] defined by P (x) = ρ(x, ϕ(M)) is definable in N and
• for every formula F in LM , the formula PF : ϕ(M)r → [0, 1] defined by PF (x) = F (ϕ−1(x))

is definable in N .

To verify the last condition, it suffices to check it on relation symbols in LM and on predicates
of the form (x, y) 7→ d(x, f(y)), where f is a function symbol in LM .
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Remark 6. If M and N are classical structures, they can be made into discrete metric structures.
Then every interpretation of M in N (in the metric sense, as defined above) induces a classical
interpretation of M in N . To see this, given a metric interpretation ϕ of M in N , use the
continuity of the associated pseudometric to choose a big enough n such that the elements in
the image ϕ(M) (which is discrete) are determined by their restriction to the first n coordinates.
Then the equivalence relation on Nn induced by restriction of ρ is well-defined and definable, and
it yields an interpretation of M in N .

If M , N and K are metric structures, ϕ : (M,dM) → ̂(Nω, ρN) is an interpretation of M
in N and ψ : (N, dN) → ̂(Kω, ρK) is an interpretation of N in K, then we can compose the
interpretations ψ and ϕ as follows.
Taking the product of ψ, we get an isometric map ψω : (Nω, dωN)→ ̂(Kω×ω, ρωK) = ̂(Kω, ρωK). Now,
since ψ(N) is definable in ̂(Kω, ρK), the image ψω(Nω) is definable in ̂(Kω, ρωK) too. Besides, ρN is a
definable pseudometric, so its pushforward by ψω also is. Then, by [B1, proposition 3.6], it extends
to a definable pseudometric ρ on ̂(Kω, ρωK). Thus, the isometric map ψω ◦ ϕ : (M,dM) → ̂(Kω, ρ)

is an interpretation of M in K.

Remark 7. If N is separably categorical and ρ is a definable pseudometric on Nω, then the struc-
ture ̂(Nω, ρ) is separably categorical too (and thus definability corresponds to invariance by the
automorphism group). Indeed, the automorphism group of N acts approximately oligomorphically
on Nω and thus on ̂(Nω, ρ) too. This implies that the whole automorphism group of ̂(Nω, ρ) is
approximately oligomorphic so, by the Ryll-Nardzewski theorem, that ̂(Nω, ρ) is separably cate-
gorical.

In particular, any structure that is interpretable in a separably categorical one is itself separably
categorical. That is the reason why it is necessary to impose an oligomorphicity restriction in
theorems 14 and 16.

Definition 8. LetM andN be two metric structures. We say thatM andN are bi-interpretable
if there exist interpretations ϕ of M in N and ψ of N in M such that ψ ◦ϕ and ϕ◦ψ are definable.

In the rest of this section, we argue that interpretations between separably categorical structures
correspond to continuous homomorphisms between their automorphism groups.

3.2. From interpretations to group homomorphisms. The first side of this correspondence
is not too surprising, for it amounts to saying one can get information on the automorphism group
from the structure. The process is however nicely functorial.

Proposition 9. Let M and N be two metric structures and ϕ an interpretation of M in N . Then
ϕ induces a homomorphism of topological groups Aut(ϕ) from Aut(N) to Aut(M).

Proof. Let g be an automorphism of N . Then g leaves ϕ(M) and the predicates PR invariant so
it induces an automorphism of (ϕ(M), (PR)) and thus of M . More formally, if a is an element of
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M , we put Aut(ϕ)(g)(a) = ϕ−1(g(ϕ(a))). Then Aut(ϕ) is the conjugation by ϕ so it is a group
homomorphism.

And since ϕ and ϕ−1 are continuous, it is easy to see that Aut(ϕ) is continuous. �

The map ϕ 7→ Aut(ϕ) is functorial: it respects composition.

Lemma 10. Let M , N and K be metric structures, ϕ an interpretation of M in N and ψ an
interpretation of N in K. Then Aut(ψ ◦ ϕ) = Aut(ψ) ◦ Aut(ϕ).

Lemma 11. Let M be a separably categorical metric structure and ϕ an interpretation of M in
itself. Then ϕ is definable in M if and only if Aut(ϕ) = idAut(M).

Proof. ⇒] If ϕ is definable, then ϕ is Aut(M)-invariant. Then, if g ∈ Aut(M) and a ∈M , we have
Aut(ϕ)(g)(a) = ϕ−1(g(ϕ(a))) = ϕ−1(ϕ(g(a))) = g(a) and thus Aut(ϕ) is the identity.
⇐] If Aut(ϕ) is the identity, the same computation shows that ϕ is Aut(M)-invariant. Since ϕ

is continuous (it is isometric), this implies that ϕ is definable (by proposition 1). �

This lemma will yield the first direction of theorem 17.

3.3. A special structure: a group with a hat. We now proceed to the second part of the
correspondence: the actual reconstruction. To this aim, we come down to a canonical structure
built from the automorphism group and with which the structure is bi-interpretable.The following
construction is due to Melleray ([M, theorem 6]).

Let M be a metric structure and G be its automorphism group. Whenever we endow G with
a compatible left-invariant metric dL, we can consider the structure Ĝ whose universe is the left
completion ĜL of (G, dL) and whose relations are all those maps of the form RC(x) = d(x,C), for
some orbit closure C of (ĜL)n under the diagonal action of G. Then the automorphism group of
Ĝ is G.

Now fix a dense sequence ξ ∈ Mω. Then, the metric on G given by dξ(g, h) = d(gξ, hξ) is a
compatible left-invariant metric.

Proposition 12. The structure Ĝ (obtained from this particular metric dξ) is interpretable in M .

Proof. Consider the map ψ : g 7→ gξ from (G, dξ) to G · ξ ⊆ Mω. It is isometric so it extends to
the left completion of G. Then ψ is an interpretation of Ĝ in M .

Indeed, the predicate P : x 7→ d(x, ψ(Ĝ)) = d(x,G · ξ) on Mω is G-invariant so it is definable in
M by proposition 1. Moreover, if C is an orbit closure and R = RC is the associated predicate in
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Ĝ, we have

PR(gx) = R(ψ−1(gx))

= R(gψ−1(x))

= R(ψ−1(x)) because R is invariant by the automorphism group

= PR(x),

so PR is definable, which completes the proof. �

Remark 13. In fact, since the image of ψ is dense, G · ξ is exactly the left completion of G and
from now on, we identify Ĝ with G · ξ.

The above proposition, along with remark 7, implies that if M is separably categorical, then
so is Ĝ. And in that case, if dL is any other compatible left-invariant metric, then the associated
hat structure is bi-interpretable with Ĝ: the two metrics generate the same topology so they are
continuous with respect to each other, and their left-invariance implies, by proposition 1, that they
are definable from each other. All the hat structures obtained from G are bi-interpretable and we
will therefore identify them.

Moreover, if M is separably categorical, then the structure M is also interpretable in Ĝ. In fact,
we have the following more general result which will be the key ingredient in the proof of theorem
16.

Theorem 14. Let N be a metric structure and let H be a subgroup of Aut(N) which acts
approximately oligomorphically on N . Then N is interpretable in Ĥ.

Proof. Let ζ be a dense sequence in N . Then Ĥ = H · ζ. Now the assumption ensures that the
space N �H of orbit closures of N by H is compact.

The intuition for the proof is to say that N is not far from being the product Ĥ ×N �H and
moreover that compact spaces should be interpreted in every structure. As a matter of fact, we
will build a particular system of representatives of N �H that Ĥ will interpret.

We begin by building a tree T representing this compact quotient N�H. For this, we will choose
representatives, within ζ, of a dense sequence of orbit closures that witnesses the compactness of
this quotient, and T will be the tree of their indices in ζ. More precisely, we build the tree by
induction: first, there exist ζn1 , ..., ζnk

in ζ such that the balls of radius 1
2
centered in the closures

of the orbits of ζn1 , ..., ζnk
cover all of the quotient. The indices of those elements constitute the

first level of our tree. For the next step, we cover each of the balls B(ζni
, 1
2
) in N with a finite

number of balls of radius 1
4
centered in elements of ζ so that the second level of our tree consists

of the indices of those centers, and so on.
The construction ensures that for every infinite branch of T , the sequence (ζσ(i)) converges in

N . Moreover, every orbit closure corresponds to an infinite branch of T (maybe even several): for
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every a in N , there exists an infinite branch σ of T such that the limit of the sequence (ζσ(i)) is in
the closure of the orbit of a. Let [T ] be the set of infinite branches of T .

We now embed N isometrically into (the completion of) a quotient of H · ζ × [T ], which we
identify with Ĥ × [T ]. This will give the base map for our interpretation.

Endow the set H · ζ × [T ] with the following pseudometric

ρ((x, σ), (y, τ)) = lim
i→∞

d(xσ(i), yτ(i)).

Since for every branch σ in [T ], the sequence (ζσ(i)) converges, this is also true of every (xσ(i)) with
x in H · ζ, so ρ is well-defined.

We now define a map ϕ : (H · ζ × [T ], ρ) → N by ϕ(x, σ) = lim
i→∞

xσ(i). By definition of ρ, the
map ϕ is isometric. In addition, the image of ϕ is dense in N . Indeed, let a be an element of
N and ε > 0. There exists a branch σ in [T ] such that (ζσ(i)) converges to some a′ in N which
is in the same H-orbit closure as a, that is, there exists h ∈ H such that d(h(a′), a) < ε, so
d(ϕ(hζ, σ), a) < ε, hence the density.

Thus, the isometric map ϕ can be extended to an isometry from the completion of (H · ζ×[T ], ρ)

onto N . Then its inverse, call it ϕ̃, is the desired isometric map between N and the completion of
(Ĥ × [T ], ρ). This was the first step in our intuition.

In order to see ϕ̃ as an interpretation of N in Ĥ, it remains to interpret [T ] in Ĥ, in other
words, to code the branches of T in a power of Ĥ (that is H · ζ via the identification of the
previous remark). The map ϕ̃ will then induce a map N → Ĥ × Ĥω, which will be the desired
interpretation.

A branch can be coded by a sequence of zeroes and ones1. Then we code2 each bit by a pair of
elements of H · ζ. Consider the pseudometric on H · ζ ×H · ζ defined by

δ((x, x′), (y, y′)) = |d(x0, x
′
0)− d(y0, y

′
0)|,

which compares the differences between the first coordinates of the two sequences of the pair. This
is a definable pseudometric and we code the bit 0 by the δ-class of (ζ, ζ) and the bit 1 by the δ-class
of (ζ, h0ζ) where h0 is some element of H that does not fix ζ0. Note that the code is invariant
under the action of H.

Finally, we identify branches of T with their codes in (Ĥ2, δ)ω and we transfer the pseudometric
ρ on Ĥ × [T ] to a definable pseudometric ρ̃ on Ĥ × (Ĥ2, δ)ω. Note that the elements of (Ĥ2, δ)ω

that code a branch of [T ] may not cover the whole of (Ĥ2, δ)ω, but [B1]’s proposition 3.6 allows us
to extend ρ̃ to (Ĥ2, δ)ω all the same.

1There are many ways of doing so; we pick one. For instance, we may say that given a branch of T , we follow
the levels of T one by one, and we put a 1 in our sequence when we hit an element of our branch and a 0 otherwise.

2There are also many ways of coding zeroes and ones in a power of H · ζ. Here we go for a method which
compares two sequences of a pair in a very simple way.
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So we can now rewrite the map ϕ̃ as a map from N to the completion of (Ĥ × (Ĥ2, δ)ω, ρ̃). The
oligomorphicity of the action ofH on N implies that the structure Ĥ = H · ζ, whose automorphism
group is H, is separably categorical. Since ρ̃ is invariant under the action of H, proposition 1 then
yields that the pseudometric ρ̃ is definable in Ĥ. Therefore, this new map ϕ̃ is an interpretation
of N in Ĥ. �

Corollary 15. If M is separably categorical, then the structures M and Ĝ are bi-interpretable.

Proof. The proposition implies in particular that M is interpretable in Ĝ. Thus, it suffices to
show that the compositions of the interpretations constructed in the previous propositions are
definable. Both interpretations respected the actions of the automorphism groups so proposition
1 and remark 7 allow us to conclude. �

3.4. Reconstruction. We are now ready to complete the reconstruction.

Theorem 16. Let M and N be two metric structures, with M separably categorical. Let
f : Aut(M) → Aut(N) be a continuous group homomorphism whose image acts approximately
oligomorphically on N . Then N is interpretable in M .

Proof. Set G = Aut(M) and H = f(G). Since H acts approximately oligomorphically on N ,
theorem 14 implies that N is interpretable in Ĥ. And by proposition 12, the structure Ĝ is
interpretable in M . It then suffices to show that Ĥ is interpretable in Ĝ.

Now H is the quotient of G by the closed normal subgroup Ker(f). If dL is a left-invariant
metric on G, then we can endow G with the following left-invariant pseudometric

d′L(g1, g2) = inf{dL(g1k1, g2k2) : k1, k2 ∈ Ker(f)}.

Since Ker(f) is normal, this indeed defines a pseudometric, which induces a compatible metric
on H. Then ̂(H, d′L), which we identify with Ĥ (see subsection 3.3), is the quotient3 of Ĝ by the
definable pseudometric d′L and is thus interpretable in Ĝ. �

Theorem 17. Let M and N be separably categorical metric structures. Then M and N are
bi-interpretable if and only if their automorphism groups are isomorphic as topological groups.

Proof. ⇒] Assume that ϕ and ψ are interpretations that witness the bi-interpretability of M
and N . Then lemma 11 implies that Aut(ϕ ◦ ψ) = idAut(N) and Aut(ψ ◦ ϕ) = idAut(M). But
Aut(ϕ◦ψ) = Aut(ϕ)◦Aut(ψ) so Aut(ϕ) = Aut(ψ)−1 and Aut(ψ) is an isomorphism of topological
groups between Aut(M) and Aut(N). Note that for this direction, we do not need the categoricity
of the structures.
⇐] By corollary 15, M is bi-interpretable with Âut(M) and N with Âut(N). Now if the

two groups are isomorphic as topological groups, then their associated hat structures are bi-
interpretable (by the discussion following remark 13). �

3Here, we do not even need to go to a power of Ĝ to interpret Ĥ.
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Example 18. In [B2], it is shown, by an explicit computation, that the probability algebra M
of the unit interval is bi-interpretable with the space N = L1([0, 1], [0, 1]) of [0, 1]-valued random
variables, identified up to equality almost everywhere. Our reconstruction theorem allows us to
recover this result in a more elegant way. Indeed, the probability algebra of [0, 1] is separably
categorical, thus its automorphism group G = Aut(µ) is Roelcke-precompact ([R, theorem 5.2]).

Moreover, G is also the automorphism group of N . The space of orbit closures of N under the
action of G can be identified with the space of probability measures on [0, 1]. Indeed, given a
measurable map in N , multiply it by G to make it non-decreasing. The resulting map is then the
characteristic function of some probability measure on I.

Thus, the space of orbit closures of N is compact. This suffices, by [BT, theorem 2.4], to get that
the action of G on N is approximately oligomorphic, hence that the structure N is also separably
categorical. Theorem 17 then applies, proving that M and N are bi-interpretable.
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